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assume that the entropy and the components of 
strain of the material all depend on the tem­
perature and the components of stress. Then 
the variation of entropy S will be given by 

(as) (as) dS = - dT + - -dui; 
aT a a a,; a" a'i.T 

(B1) 

where the subscript a means all components of 
stress are held constant, the subscript U =F a'l 

means all stress components except the one 
particular a'l are held constant, and the sum­
mation convention is used, so the last term 
stands for nine terms. The transition tempera­
ture TA is a function of the components of 
stress, and it is useful to introduce in the 
manner of Buckingham and Fairbank [1961] an 
auxiliary variable t = T - TA• If we divide 
both sides of equation Bl by dUk., holding all 
the other components of stress and t constant, 
we find 

(asjaUk/)a ....... = (as/aT)iaT/auu) ..... , .• 

+ (as/aUkl) ... a ... T 

Applying the Maxwell relation [Callen, 1960, 
p.225] 

(as/aUkl)a .. a ... T = V(aEkI/aT)a 

and rearranging, we obtain one of the gen­
eralized Pip pard relations 
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Fig. lOb. Amount of sample in volume per cent 
in which the transition temperature T._p varies 
symmetrically by a given amount about the mean 
transition temperature (Tp). Absciilsa is plotted 
in relative units so that temperature variations 
can be computed for hollow cylinders of any di­
mensions subjected to any external pressure, using 
Q = P (b2/b' - a2

) and (M, - M.) = 5.6°C/kb. 

Vakl = MkI(Ca/T) + (aSlaukI)........ (B2) 

where 

Mkl - -(:~}# ... , == -(:~:).# .. 
T (as) 

aT a 
and 

-Mk' is the slope of the phase boundary in the 
Uk! - T plane at the point on the boundary 
determined by the state of stress, and Ca, a." 
and V are, respectively, the specific heat at 
constant stress, linear thermal expansion, and 
specific volume of the material in the same state 
of stress and at temperature T. 

Similarly, if we consider the variation of a 
particular strain component e'l in the a.. - T 
plane parallel to the transition boundary (t = 
constant), we find the other generalized Pip­
pard relations 

Siik/ = Mk1a'i + (aE,;/aUkl)a"al' .• 
where 

is the isothermal compliance tensor. 

(B3) 

The hydrostatic Pippard relations can be 
obtained from these equations. Setting i = j in 
(B2) and summing yields 

Va = (aT/ap), (Cp/ T) - (as/ap). (B4) 

whereas summing (20) over all i = j and all 
k = l yields 

f3T = (aTjap). a - (1/ V) (a v/ap). (B5) 

In these equations III is the volumetric coefficient 
of thermal expansion and {3'r the volumetric 
coefficient of isothermal compressibility. 

The last term in equations (B2) and (B3) is 
the rate of change of entropy and strain, re­
spectively, parallel to the phase boundary, and 
thus must be finite everywhere on the boundary 
(except perhaps at discrete points). Hence (B2) 
requires that the components of au that are 
nonzero become infinite at the boundary (be­
cause C. becomes infinite for a A. transition and 
M k • is finite) and that the components that are 
zero be matched by zero values for the corre­
sponding components of M k ,. Likewise equation 
(B3) requires that Silk/ becomes infinite at the 
boundary for all values of i, j, k, l such that 

! 
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both a" and Mt , are nonzero. For these cases 
in which 0'0' and S"k'" become infinite on ap­
proaching the transition there will be some 
neighborhood about the boundary in which the 
first and second terms of (B2) and (B3) vary 
much more quickly than the third, so that M .. 
will be given by the limiting slope of Va· .. 
plotted versus C~/T or 8"k,T versus a". We 
symbolize these asymptotic relations by the 
following notation: 

8HU
T 

_ Mk1a,; as T - T), (B7) 

Another important relation that follows immedi­
ately from (B2) is 

(B8) 

If we apply these asymptotic relations to a 
crystal with trigonal symmetry, choosing the 
reference axes for the tensors to coincide with 
the symmetry axes as shown in Figure 4, then 
(B6) yields 

Val - Ml(C~/T) 

Vas - M3(C~/T) 

and (B7) yields 

8uu T == 811 T _ Mla! 

81122 T == 812 T _ Mlal 

81183 T == 813 T _ M3a) 

83333 T == 833 T _ M3a3 

83SU T == S13 T _ lIf,as 

(B9) 

T-T), 

(BI0) 

as T - T), 

1 

1 

1 

1 

can be found in Nye [1957J. Single subscripts 
on second-rank symmetric tensors 0'0' and MOl 
denote principal values.) Equation B8 reduces 
to the important constraint 

as T - T), (BUa) 

There are two nonzero compliance com­
ponents in trigonal crystals that do not enter 
in the asymptotic relations above: su.:} = suT 

and s=/ = suT
• The fact that M .. = 0 means 

that the phase boundary is parallel to the 0'", 

axis, so that dt = dTx = dT = 0 for any du"" 
and (B3) reduces to the definition of compli­
ance. Thus, we would not expect SI/ and suT 

to be infinite at a A transition in trigonal 
crystals. 

Although it is quite uncertain whether the 
ar-(3 transition in quartz rigorously satisfies the 
definition of a A transition, there is no doubt 
that the behavior generally resembles a A transi­
tion, and indeed it seems that S14

T and 8,." 
behave differently from the other compliance 
components of quartz near the transition. Thus, 
both Mayer [1960J and Perrier and de Mandrot 
[1923J report that Su goes smoothly to zero as 
the transition is approached from the a-quartz 
side (of course, Su = 0 for (3 quartz because of 
its hexagonal symmetry), and s .. appears to 
increase less drastically near the transition than 
any of the other four components (Figure 3). 

Hence, from equations B2 and B3 we con­
clude that the following asymptotic form should 
hold for the compliance matrix of a crystal 
when T _ Tx of a A transition that involves 
inversion from trigonal (class 32) to hexagonal 
(class 62) symmetry: 

M31Ml 0 0 0 

M31Ml 0 0 0 

Si; T _ SlI T MaI M\ M3IM! (M3IM,)2 0 0 0 
(BUb) 

0 0 0 0 0 0 as T-T), 

0 0 0 0 0 0 

0 0 0 0 0 0 

(The condensed two-index matrix form of the This matrix, though still consistent with hex-
compliance for crystals of all symmetry groups agonal symmetry, is much simpler than the 


